viernes, 25 de mayo de 2007

LEY DE LENZ

7.8 CORRIENTES INDUCIDAS. LEY DE FARADAY. LEY DE LENZ
Ya se anticipó que, al igual que una corriente crea un campo magnético, un campo magnético puede crear una corriente eléctrica. Esto es una consecuencia del princípio de conservación de la energía:
Un sistema tiende a mantener su energía constante.
Como quiera que el magnetismo no es sino una de las formas en que se manifiesta la energía, resulta que una bobina intenta mantener su flujo magnético (su energía magnética almacenada) constante. Si causas externas lo hacen disminuir, la bobina reaccionará creando una corriente que mantenga el flujo inicial. Si, por el contrario, causas externas lo hacen aumentar, la bobina reaccionará creando una corriente que origine un flujo contrario, a fin de disminuir el flujo y mantenerlo en su valor inicial.
Naturalmente esta situación no se puede mantener, ya que una bobina, por sí sola, no es capaz de generar energía indefinidamente.
Pasado un cierto tiempo, la reacción de la bobina cesará y "aceptará" las condiciones impuestas desde el exterior.Este comportamiento de las bobinas fué descubierto experimentalmente por Lenz, quien enunció su Ley de la siguiente manera:
Ley de Lenz
"Cuando varía el flujo magnético que atraviesa una bobina, esta reacciona de tal manera que se opone a la causa que produjo la variación"Es decir, si el flujo aumenta, la bobina lo disminuirá; si disminuye lo aumentará. Para conseguir estos efectos, tendrá que generar corrientes que, a su vez, creen flujo que se oponga a la variación. Se dice que en la bobina ha aparecido una CORRIENTE INDUCIDA, y, por lo tanto, UNA FUERZA ELECTROMOTRIZ INDUCIDA.
Se verá un ejemplo aclaratorio: Supongamos que la bobina, situada a la izquierda en la figura siguiente, tiene un flujo nulo.Por lo que la corriente I será nula también.
Si le acercamos un imán, parte del flujo de éste atravesará la propia bobina, por lo que el flujo de la bobina pasará de ser nulo a tener un valor.
La bonina reaccionará intentando anular este aumento de flujo y
¿ cómo lo hará ?
Lo hará creando una corriente I en el sentido indicado en la figura, porque de esa manera, esta corriente creará un flujo contrario oponiéndose al aumento impuesto desde el exterior. Una vez transcurrido cierto tiempo, la bobina se ha amoldado a las nuevas condiciones y el flujo que la atraviesa será el que le impone el imán. Al amoldarse dejará de crear la corriente indicada, que pasará de nuevo a ser cero.
Si ahora se aleja el imán, el flujo que estaba ahora atravesando la bobina disminuirá, por lo que la bobina reacionará creando de nuevo una corriente está vez de signo contrario al anterior, para producir un flujo que se oponga a la disminución.
LEY DE FARADAY.- La Ley de Lenz sólamente habla de la forma en que se comporta la bobina pero no dice nada acerca de la magnitud de la corriente o de la fuerza electromotriz inducida. Faraday llegó a la conclusión que esta (la fuerza electromotriz E) vale:
siendo:
E: f.e.m. inducida n: número de espiras de la bobina Df: Variación del flujo Dt: Tiempo en que se produce la variación de flujo
El signo menos (-) indica que se opone a la causa que lo produjo (Ley de Lenz)
Por ejemplo: Si el flujo que atraviesa una bobina de 5 espiras aumenta de 10 a 11 Webbers en una décima de segundo, la f.e.m. inducida vale:
11 - 10 E = 5 --------------- = 5 x 10 = 50 V. 0,1
Volver a lecciones
Volver a MAGNETISMO (CAPITULO VII)

ALBERGUES / HOSTELS VALENCIA

http://www.ifent.org/lecciones/cap07/cap07-08.asp
7.8 CORRIENTES INDUCIDAS. LEY DE FARADAY. LEY DE LENZ
Ya se anticipó que, al igual que una corriente crea un campo magnético, un campo magnético puede crear una corriente eléctrica. Esto es una consecuencia del princípio de conservación de la energía:
Un sistema tiende a mantener su energía constante.
Como quiera que el magnetismo no es sino una de las formas en que se manifiesta la energía, resulta que una bobina intenta mantener su flujo magnético (su energía magnética almacenada) constante. Si causas externas lo hacen disminuir, la bobina reaccionará creando una corriente que mantenga el flujo inicial. Si, por el contrario, causas externas lo hacen aumentar, la bobina reaccionará creando una corriente que origine un flujo contrario, a fin de disminuir el flujo y mantenerlo en su valor inicial.
Naturalmente esta situación no se puede mantener, ya que una bobina, por sí sola, no es capaz de generar energía indefinidamente.
Pasado un cierto tiempo, la reacción de la bobina cesará y "aceptará" las condiciones impuestas desde el exterior.Este comportamiento de las bobinas fué descubierto experimentalmente por Lenz, quien enunció su Ley de la siguiente manera:
Ley de Lenz
"Cuando varía el flujo magnético que atraviesa una bobina, esta reacciona de tal manera que se opone a la causa que produjo la variación"Es decir, si el flujo aumenta, la bobina lo disminuirá; si disminuye lo aumentará. Para conseguir estos efectos, tendrá que generar corrientes que, a su vez, creen flujo que se oponga a la variación. Se dice que en la bobina ha aparecido una CORRIENTE INDUCIDA, y, por lo tanto, UNA FUERZA ELECTROMOTRIZ INDUCIDA.
Se verá un ejemplo aclaratorio: Supongamos que la bobina, situada a la izquierda en la figura siguiente, tiene un flujo nulo.Por lo que la corriente I será nula también.
Si le acercamos un imán, parte del flujo de éste atravesará la propia bobina, por lo que el flujo de la bobina pasará de ser nulo a tener un valor.
La bonina reaccionará intentando anular este aumento de flujo y
¿ cómo lo hará ?
Lo hará creando una corriente I en el sentido indicado en la figura, porque de esa manera, esta corriente creará un flujo contrario oponiéndose al aumento impuesto desde el exterior. Una vez transcurrido cierto tiempo, la bobina se ha amoldado a las nuevas condiciones y el flujo que la atraviesa será el que le impone el imán. Al amoldarse dejará de crear la corriente indicada, que pasará de nuevo a ser cero.
Si ahora se aleja el imán, el flujo que estaba ahora atravesando la bobina disminuirá, por lo que la bobina reacionará creando de nuevo una corriente está vez de signo contrario al anterior, para producir un flujo que se oponga a la disminución.
LEY DE FARADAY.- La Ley de Lenz sólamente habla de la forma en que se comporta la bobina pero no dice nada acerca de la magnitud de la corriente o de la fuerza electromotriz inducida. Faraday llegó a la conclusión que esta (la fuerza electromotriz E) vale:
siendo:
E: f.e.m. inducida n: número de espiras de la bobina Df: Variación del flujo Dt: Tiempo en que se produce la variación de flujo
El signo menos (-) indica que se opone a la causa que lo produjo (Ley de Lenz)
Por ejemplo: Si el flujo que atraviesa una bobina de 5 espiras aumenta de 10 a 11 Webbers en una décima de segundo, la f.e.m. inducida vale:
11 - 10 E = 5 --------------- = 5 x 10 = 50 V. 0,1
Volver a lecciones
Volver a MAGNETISMO (CAPITULO VII)

ALBERGUES / HOSTELS VALENCIA

© 1999- 2005 ifent.org Todos los derechos reservados

miércoles, 2 de mayo de 2007

refraccion


DEFINICIÓN
Es el cambio de dirección que experimenta un rayo de luz cuando pasa de un medio transparente a otro también transparente. Este cambio de dirección está originado por la distinta velocidad de la luz en cada medio. ÁNGULO DE INCIDENCIA Y ÁNGULO DE REFRACCIÓN
Se llama ángulo de incidencia -i- el formado por el rayo incidente y la normal. La normal es una recta imaginaria perpendicular a la superficie de separación de los dos medios en el punto de contacto del rayo.
El ángulo de refracción -r'- es el formado por el rayo refractado y la normal.

ÍNDICE DE REFRACCIÓN
Se llama índice de refracción absoluto "n" de un medio transparente al cociente entre la velocidad de la luz en el vacío ,"c", y la velocidad que tiene la luz en ese medio, "v". El valor de "n" es siempre adimensional y mayor que la unidaUna parte del rayo incidente se refleja y la otra se refracta. Cuando un rayo se refleja sin penetrar en el otro medio, parte de él es absorbido por la interacción con los átomos.
Siempre que la radiación atraviesa un medio, una parte de ella es absorbida por el medio (no se transmite toda). d, es una constante característica de cada medio: n = c/v.
Se puede establecer una relación entre los índices de los dos medios n2 y n1. En el applet de esta práctica se manejan estas relaciones:
Substancias
Aire
Agua
Plexiglás
Diamante
Índices de refracción
1.00029
1.333
1.51
2.417
material
aire
vapor de agua
agua dulce
agua de mar
aluminio
Velocidad del sonido (m/s)
331
401
1493
1513
5104

REFRACCIÓN: LEYES
Un rayo se refracta (cambia de dirección) cuando pasa de un medio a otro en el que viaja con distinta velocidad. En la refracción se cumplen las siguientes leyes:
1.- El rayo incidente, el rayo refractado y la normal están en un mismo plano.
Ver una animación con la demostración

2.- Se cumple la ley de Snell:
y teniendo en cuenta los valores de los índices de refracción resulta:
n1sen i = n2 sen r.
Cuando la luz se refracta cambia de dirección porque se propaga con distinta velocidad en el nuevo medio. Como la frecuencia de la vibración no varía al pasar de un medio a otro, lo que cambia es la longitud de onda de la luz como consecuencia del cambio de velocidad.
La onda al refractarse cambia su longitud de onda:
e = v·t
que equivale a l = v ·T = v / n
Un rayo incidente cambia más o menos de dirección según el ángulo con que incide y según la relación de los índices de refracción de los medios por los que se mueve.
Aplicación interactiva

ÁNGULO LÍMITE
Si n2 es mayor que n1, como en el caso de la luz cuando pasa desde el aire (n 1) al vidrio o al agua (n2 ), el rayo refractado se curva y se acerca a la normal tal como muestra la
figura de inicio de esta página.
En el caso contrario, es decir, si el rayo de luz pasa del medio 2 (agua) al medio 1 (aire) se aleja de la normal.


A un determinado ángulo de incidencPara ángulos de incidencia mayores que él, el ángulo de refracción será mayor de 90º y el rayo no será refractado, ya que no pasa de un medio a otro: se produce una reflexión total interna.
Al incidir un rayo sobre una superficie transparente parte de él se refleja.
SIEMPRE QUE SE PRODUCE REFRACCIÓN TAMBIÉN SE PRODUCE REFLEXIÓNia le corresponde un ángulo de refracción de 90º y el rayo refractado saldrá "rasante" con la superficie de separación de ambos medios.
Este ángulo de incidencia se llama ángulo límite o ángulo crítico.

Cuando el rayo de luz pasa de un medio más lento a otro más rápido se aleja de la normal.